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Effect of a-stable sorptive waiting times on microbial transport in microflow cells
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The interaction of bacteria in the fluid phase with pore walls of a porous material involves a wide range of
effective reaction times which obey a diversity of substrate-bacteria adhesion conditions, and adhesive mecha-
nisms. For a transported species, this heterogeneity in sorption conditions occurs both in time and space.
Modern experimental methods allow one to measure adhesive reaction times of individual bacteria. This
detailed information may be incorporated into nonequilibrium transport-sorption models that capture the het-
erogeneity in reaction times caused by varying chemical conditions. We have carried out particle~Brownian
dynamic! simulations of adhesive, self-motile bacteria convected between two infinite plates as a model for a
microflow cell. The adhesive heterogeneity is included by introducing adhesive reaction time~understood as
time spent at a solid boundary once the particle collides against it! as a random variable that can be infinite
~irreversible sorption! or vary over a wide range of values. This is made possible by treating this reaction time
random variable as having ana-stable probability distribution whose properties~e.g., infinite moments and
long tails! are distinctive from the standard exponential distribution commonly used to model reversible
sorption. In addition, thea-stable distribution is renormalizable and hence upscalable to complex porous
media. Simulations are performed in a pressure-driven microflow cell. Bacteria motility~driven by an effective
Brownian force! acts as a dispersive component in the convective field. Upon collision with the pore wall,
bacteria attachment or detachment occurs. The time bacteria spend at the wall varies over a wide range of time
scales. This model has the advantage of being parsimonious, that is, involving very few parameters to model
complex irreversible or reversible adhesion in heterogeneous environments. It is shown that, as in Taylor
dispersion, the ratio of the channel half widthb to the Brownian bacteria motility coefficient~D0 or dispersion
coefficient! tb5b2/D0 controls the different adhesion regimes along with the value ofa. Universal scalings
~with respect to dimensionless timet* 5t/tb! for the mean position,̂X&5Veff* t

*
u , and mean-square displace-

ment,^DX2&5Deff* t
*
g exist for long-time dispersion and the coefficients were obtained. The model can account

for a great many sorptive processes including reversible and irreversible sorption, and sub- and superdispersive
regimes with just a few parameters.
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I. INTRODUCTION

The present study is motivated by the desire to predict
spread of genetic information through complex natural
rous media. Specifically, our group is interested in verifyi
the two following hypotheses:~i! Newly introduced bacteria
can exchange specific genes with indigenous species tha
attached to a surface provided the genes are judiciously
cated in the genome of the donor bacterium. Under this
pothesis, the survival of the newly introduced bacterium
unimportant provided the genes of interest are transferre
the indigenous species.~ii ! Given information on the ‘‘sticki-
ness’’ and hydrodynamic characteristics of the indigen
and introduced populations, it is possible to mechanistic
predict the success of gene transfer strategies in porous
dia. This later hypothesis is partially addressed by the w
presented herein, that is, this is a first step in verification
hypothesis~ii !. A first step in verification of hypothesis~i!
may be found in Wu@1#.

*Now at Department of Chemical Engineering, Purdue Univ
sity.

†Email address: jcushman@purdue.edu
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Bacterial motility is of importance to a wide spectrum
applied scientific disciplines, including human health, fo
science, and environmental bioremediation. Analysis of
crobe dynamics is far from complete. The phenomena fo
is as diverse as life itself@2,3#, involving mechanisms of
bacteria motility, bacteria-substrate~surface! and cell-to-cell
interactions, hydrodynamic interactions, chemotaxis, therm
taxis, magnetotaxis, and adhesion. These mechanisms a
spatial scales ranging from nanometers to millimeters.
understand the mechanisms of bacterial motility, one ne
knowledge from several scientific disciplines: anatomy, g
netics, chemistry, and physics@2#.

An important factor in the engineering of biobarriers
bioremediation is the microbial partitioning that takes pla
between the aqueous and solid phases. Factors that a
such partitioning are numerous, but include such things
growth and starvation conditions@4–6#, limiting of nutrients
@7#, potential toxicity in the aqueous phase@8#, as well as
varying surface properties of the adsorbent. The proper
resentation of the biological phase is a matter without c
sensus~as noted in the exchanges of Widdowson@9# and
Jaffe and Taylor@10#!. We present a model which will serv
as a basis for an unstructured biological population, and
focus on the individual dynamics of a single microbe, or
system of such particles in relatively low concentration
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that they have little effect on the surrounding environm
and each other. One may think of this as the initial sta
before a type of colonization of the surface occurs.

Before we focus on the main aspects of this study,
briefly refer to some of the most relevant research on
subject. Although several references and models are m
tioned in the Introduction, no excessive details are giv
since there exist in the literature good reviews on the sub
@2,11#.

A. Relevant scales

In a single microflow cell, at least three different leng
scales need to be explored. Within tens of nanometers~sub-
micron scale! from the pore wall, bacterium-wall interaction
will dominate over diffusion or convection. On the scale
several bacterium radii~a few microns!, hydrodynamic inter-
actions between the microbe and the surface and other
ticles, bacterial motility, and reduced diffusion dominate.
the scale of the pore radius~tens of microns to millimeters!,
convection, bacterial motility, hydrodynamic dispersion, a
diffusion in the bulk phase combine to affect transport.

Associated with each length scale, there, exists a t
scale which plays an important role in this biophysical tra
port problem and consequently in designing an effici
Brownian dynamics computational algorithm. We discu
this and the various processes in subsequent sections.

B. Bacterial motility and advection

The movement of bacteria in a stagnant fluid is descri
by a run and tumble~or twiddle! behavior@2,12#. This be-
havior consists of a sequence of runs, that is, a linear mo
ment in a particular direction, followed by tumbles which a
random changes of direction. While the length of the jum
in the motility pattern seems to be better described by a L
flight random search@2,13#, it has been modeled as a Brow
ian motion in the present work. The diffusion coefficient
associated with bacteria self-propulsion rather than a ther
bath. Brownian dynamics seem to describe such a mot
pattern in certain cases, and a number of studies@14,15# sup-
port its use for modeling bacteria motility. The classic
Brownian diffusion coefficient is replaced with a larger c
efficient representing bacteria self propulsion. This assu
the run and tumble mechanism has a similar probability
or limit theorem to that of a larger particle in a bath of ma
identical, smaller particles. The random forces can
thought of as a sum of Brownian forces together with ra
dom swimming forces generated by a microbe in a homo
neous liquid. If there is no chemo-, thermo-, or magnetota
then the angular diffusion is isotropic. We assume the r
dom forces are normally distributed and independent. T
normality assumption is an averaging over different parti
trajectories. Swimming bacteria patterns may exhibit spec
features different from those of Brownian dynamics. K
and McGrath @16#, for instance, dispute the validity o
Brownian models applied to bacterial transport based on
served fluctuations of Listeria motility.

Most research on bacterial motility has centered on fl
ellated organisms, likeE. coli. Berg and collaborators hav
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explained how flagellated cells swim and how their molec
lar sized engines work@2#. Only recently significant findings
about nonflagellated organisms have emerged@17#. Non-
flagellated microbes are thought to move by producing tr
eling waves that propagate down the surface of the micro
Samuelet al. @17# have discovered fine hairs just a few n
nometers thick and a fraction of a micrometers long s
rounding a cyanobacterium. This finding enhances the w
propagation theory and provides a better explanation ba
on fine hair self propulsion.

Biondi et al. @18# studied swimming bacteria~E. coli! in
restricted geometries, measuring cell velocity, tumbli
probability, and turn angle of single cells in micro channe
They concluded that only when capillaries are smaller th
three times the diameter of the bacteria, there exist a vis
change in the bacteria’s motility with respect to their motili
in a bulk fluid ~unrestricted media!. The macroscopic motil-
ity in unrestricted geometry with respect to motility in ve
small capillaries is increased by a factor proportional to
size of the system. By design, sticking to the glass surfa
did not occur in their experiments.

Phillips et al. @19# measured in separate experiments
motility of E. coli. They determined the distribution of ce
velocities was slightly skewed from normal, and the r
length time distributions were exponential. They were una
to measure turn angles between consecutive runs bec
cells would not remain in the microscope’s focal plane lo
enough. The values of the variables that could not be m
sured were taken for their analysis from Berg and Bro
@20#. They also suggested that the macroscopic behavio
population motility can be predicted from microscopic obs
vations. In particular, the expressions proposed by Oth
et al. @21#, and Riveroet al. @22# were suitable for the con
ditions tested.

The behavior of motile cells near a solid surface has b
extensively studied experimentally in the absence of b
flow, but relatively little is known about motile cell behavio
in advective flow fields@23#. Camesano and Logan@23# stud-
ied the effect of fluid velocity on the transport of motile an
nonmotile bacteria. They observed that the collision e
ciency ~defined as the ratio of particles that attach to s
grains to particles that collide with the soil! decreases as th
mean velocity decreases. An alternative definition of co
sion efficiency closer to what is presented here is that gi
by Rijnaartset al. @24#: Collision efficiency is the probability
of a cell to attach upon reaching a substratum. This may
computed as the ratio of collisions where particles attach
soil grains, to total number of collisions against the so
Testing against nonmotile bacteria, they hypothesize
swimming cells are able to avoid sticking to soil grains
low-fluid velocities, while at high-fluid velocities, bacteri
could not reduce attachment. The present work examine
virtual experiments the movement of single-cell organis
subject to convective flow and fluctuations driven by Brow
ian dynamics. The fluctuations owe their origin to the swi
ming character of the microbe. It also includes attachm
and detachment from the walls including reversible and ir
versible sorption.
5-2
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C. Bacterial adhesion

Researchers looking at bacterial adhesion have u
knowledge developed studying the sorption of macrom
ecules or colloidal particles to formulate theories and dev
experimental methods. In the development of sorption th
ries, irreversible sorption has been more actively researc
than reversible sorption. This is in part because for ma
applications~e.g., filtration! sorption is irreversible. Anothe
reason is that the irreversible problem is easier to analyz
perfect sink wall or irreversible sorption boundary@11# pro-
duces a system of equations for which solutions are kno
A reversible sorbing boundary produces a far more comp
system of coupled equations for which solutions are of
not readily available@11,25#. Sorption to a reversible bound
ary depends on the history of sorption~another type of steric
effect!, which in turn depends on phenomena occurring
the bulk phase. The result is a nonlinear behavior.

Bacteria often reversibly attach to mineral and biologi
surfaces@3,26–29#. More experimental observations are ne
essary to define the characteristics of residence times an
effect of conditions such as stress~e.g., starvation condi-
tions!, chemical gradients~chemotactic behavior!, hydropho-
bic or hydrophilic effects, etc. Adhesion strength is time d
pendent; adhesion may be reversible until a point in time
which the attachment becomes irreversible@28–30#.

It has been proposed that once a cell has arrived with
few nanometers from a wall with an attractive potential,
will be sorbed irreversibly@30,31#. Yet, when sorbed there
remains a possibility for lateral displacement@31# over dis-
tances of several particle diameters. This lateral transla
coupled with the existence of heterogeneities over the s
strate may affect desorption. Upon arrival to positions wh
the attractive potential decreases, bacteria might be ab
free themselves from the adsorbent’s surface and swim
the aqueous phase.

D. Brownian dynamics simulations

Brownian dynamics provides a rigorous dynamical mo
sophisticated enough to study the rich behavior of bacte
transport including sorption. Dealing with various bounda
conditions is not a trivial exercise when studying Browni
particles. While ‘‘sticky’’ Brownian motion has been studie
in the mathematical literature, it has not been applied to so
tion. A large part of the Brownian dynamics simulation wo
analyzing hydrodynamic interactions between particles
walls is based on an algorithm by Ermak and McCamm
@32# ~see also Bafaluyet al. @33#!.

The Brownian dynamics computation presented here
corporates the effect of reversible adhesion through the
of sticky Brownian motion. The focus is on the single po
scale. This task also involves processes at two additio
length scales, that is, a diffusive layer extending a few
crons from the substrate surface and an sorptive or inte
tion layer of submicron thickness. No model for these t
smaller scales is presented. Instead, a stochastic proce
hypothetically formulated that is consistent with the transp
properties observed in experiments and what is known
theory and practice about the processes involved at th
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scales. With this, the algorithm centers on the effects of
versible and irreversible adhesion at the pore scale, andthe
effects of bacteria motility.

The transport of a Brownian particle sticking to a wall
analyzed under advection by a Couette flow between infi
planes. Laminar or creeping flow is the focus of the hyd
dynamic study, since the natural system~water flow in geo-
logical formations! of interest exhibits low Reynolds num
bers and as such is rarely if ever turbulent. The bacte
trajectories are modeled and statistical averages are c
puted and discussed. The bacteria are modeled as Lagran
particles subject to drag and self-propelling~swimming!
forces. These forces are generally unknown, yet phenom
logical and statistical information merits modeling them
random. Brownian motion seems an appealing model
bacterial swimming, and it is coupled to a probabilistic w
attachment or detachment model. This probabilistic mo
introduces stickiness parameters to control the attachmen
detachment process or physicochemical interactions betw
microbes and the solid matrix. Bacteria sorption is a com
sition of processes on many time scales. Dominant adhe
processes may be ruled by short time in the diffusive la
and longer-time adhesion associated with the submic
scale. When the substrate conditions are variable in sp
and the bacteria itself exhibits heterogeneity in the attach
conditions or mechanisms, one might expect that for ma
collision or attachment events, the distribution of waitin
times will look continuous instead of appearing multimod
or discrete.

II. MODEL

Here we discuss the mathematical model for the trans
of bacteria in solution which react with a solid surface~ad-
sorbent! containing the solution. Mathematically, the volum
occupied by the solution is labeled free space or domain
the solid surface is the domain boundary. Bacteria poss
search mechanisms@13# which are manifest in motility com-
posed by run and tumbles as discussed in the introduct
Bacteria respond to stimuli~e.g., a chemical, thermal, o
magnetic gradient in which case the phenomenon are kn
as chemo-, thermo- or magnetotaxis, respectively! by in-
creasing or decreasing run times between tumbles. The
tual tumbling distribution appears unaffected by the enviro
ment. If a chemical potential is introduced into a mediu
containing bacteria, receptors on the microbe surface can
tect the change up to a saturation point at which all recep
are activated. In a large population of bacteria, a statist
average can be made for the concentration in the presen
a one-dimensional gradient. This homogenization perform
in Rivero et al. @22# leads in one dimension to a classic
convective-dispersion equation~CDE! and if there is no gra-
dient in chemical potential then the CDE reduces to a c
sical diffusion equation with the diffusion coefficient repr
sentative of the random run and tumbling.

If we think of the concentration of microbes,C(x,t), as a
probability density,p(t,x), we can write the CDE as

]p

]t
5

]

]x FD~x,t !
]p

]xG2
]

]x
@V~x,t !p#, ~1!
5-3
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which corresponds to a forward-Kolmogorov or Fokke
Planck equation. Here,V(x,t) is some convective flow field
bacteria reside in. We may now associate a stochastic pro
Xt , with p as its transition density. Another way of descri
ing the behavior is to think of it as the solution of a stoch
tic differential equation~SDE! which is the continuous time
version of a random walk. The SDE that it satisfies can
written

dXt5AD~Xt ,t !dWt1V~Xt ,t !dt ~2!

with initial datax0 . Here,Wt is a Brownian motion. We take
Eq. ~2! in the Ito sense.

If we consider a higher-dimensional domain as a set
one-dimensional tubes, then this equation is generalized

]p~ t,x!

]t
5

1

2 (
]2

]xi]xj
@Di j p~ t,x!#2(

]

]xi
@Vi~x,t !p#,

~3!

whereDi j is a dispersion matrix andVi is an advection vec-
tor. Up to this point, we have assumed that the motion of
bacteria is not confined, that is there has been no boun
effects. To study the movement in a capillary tube or mic
flow cell we need to augment Eqs.~3! or ~5! by some bound-
ary conditions. In the random walk, we want to impo
physically meaningful boundary conditions which captu
the attachment and detachment behavior of microbes.
boundary behavior is crucial in understanding the transp
of microflora in porous media. In Boyd and Chakraba
@34#, the attachment/detachment process is shown to o
regularly. At each pointxPG of the boundary we assign
measure of ‘‘stickiness,’’r(x). This measure ranges from 0
reflecting, through infinity, at which point a microbe
sorbed to the surface irreversibly. A similar model has be
proposed for the flow of a chemical pushed by an inert
through a tube with liquid state on the boundary@35#. On a
domain E, with a boundaryG, the stochastic differentia
equations representing the motion of a sticky bacteria
given by

dKt51G~Xt!dKt ,X05x,XtPE, ~4a!

^Ni ,Ni&5S t2E
0

t

r~Xs!dKsD , ~4b!

dXt5AD~Xt!dNt1V~Xt!@dt2r~Xt!dKt#1g~Xt!dKt ,
~4c!

whereXt is the microbe’s position, 1G51 if x is on G ~mi-
crobe in sorbed phase! and 1G50 otherwise~microbe in
aqueous phase!, Kt is a measure of the time the bacteria
near to, but not on the boundary.Nt is a random directiona
motion which only changes whenXt is not on the boundary
g is a directional vector which keeps the microbe inside
domain, and the bracket process^N,N& is a measure of the
amount of time a particle has spent inside the domain u
time t. With these interpretations, Eq.~4a! says thatKt only
increases whenXt is near~at! the boundary and the last equ
tion states that inside the domainXt acts as a classica
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Brownian motion. In this model, the rate of sorption a
desorption happen relatively quickly and what is importan
the ratio of the rates of sorption when the microbe is near
boundary and attachment time once on the boundary. T
assumption, while rather restrictive, leads to numeri
schemes which have the appropriate limiting behavior
fast reactions, and which can themselves be modified in c
of slower reactions. Moreover, in the above mathemat
model, the ‘‘local time’’ satisfies the equation

Kt5E
0

t

10,d„X~s!,G…,e~s!ds, ~5!

whered„X(s),G… is the distance fromX to the boundary.

A. Reversible sorption

For reversible sorption, it is assumed that the expec
time on the boundary and its variance are both finite. A ty
cal assumption is that the time at the boundary is expon
tially distributed. If the time on the boundary does not ha
finite mean and variance, the boundary behavior correspo
to deposition and a scale up or homogenization would lea
transport with decay. The appropriate boundary conditio
for the Fokker-Planck Eq.~1! are known in one dimension
~see Borodin and Salminen@36#! and can be immediately
extended to more dimensions. Equation~1! can be rewritten
as

]p~ t,x!

]t
5Lp~ t,x!, ~6!

whereL is a linear operator. We require that at the bound
p(t,x) satisfies

]p

]n
1r

]p

]t
50, ~7!

where]p/]n is the normal derivative ofp and the value of
r]p/]t is taken to be the limit as one approaches the bou
ary from inside. This is a form of mass balance. Since
concentration is permanently sorbed, the outflow at
boundary]p/]n is determined by the loss with respect
time of the concentration near the boundaryr]p/]t. The
usual no flow conditions correspond tor50, which says
nothing is even temporarily stored at the boundary.

Formally, we can also write Eq.~7! as

]p

]n
1rLp50. ~8!

The Fokker-Planck equation with these boundary con
tions seems not to be well studied, but there is some work
the SDE approach. One of the most fundamentally use
results concerning the sticky boundary conditions is the
lationship between solutions of SDE which are the same
cept for the boundary stickiness. Specifically, Graham@35#
showed@Theorem 1.7# that if one has two measuresr, r̄, and
one is subordinate to the other, that is, one hasr<r̄, then
solving the SDE forr immediately gives a solution forr̄, but
5-4
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run with a different ‘‘clock’’ or ‘‘time change.’’ More pre-
cisely, the theorem states that if (Xt ,Kt ,r) is the solution of
Eq. ~4! and we letAt5t1*0

t ( r̄2r)(Xs)dKs be an increas-

ing function with inverseAt
21 then X̄t5XA

t
21 and K̄ t

5KA
t
21 solves the SDE forr̄. A particular example is taken

by letting r50 which is subordinate to any measure
stickiness. Practically, this means that solving the reflec
boundary condition and keeping track of the local time
lows one to study the sticky boundary problem. This ‘‘tim
change’’ is important also from a numerical point of view
that it says to approximate the SDE with a random w
model one needs to generate a reflected random walk
with a random insertion of time when it hits the bounda
The reflecting boundary condition has been numerica
studied in the case of the half plane by Lepingle@37# where
an Euler scheme with a good convergence rate is given.
generalize to other domains this scheme by considering t
as approximately polygonal. The distribution for the inser
time can be freely set, but necessarily depends on the
step involved due to the rapidly fluctuating behavior of
Brownian motion~the local time is not differentiable!.

In particular, the complex~experimentally observed! be-
havior remarked upon by McCaulouet al. @28# can be pro-
duced if the inserted time is a mixture of a highly probab
small time and a less likely large time~bimodal time distri-
bution!. This separation of two characteristic time sca
might be reflected in the related characteristic length sc
discussed previously. The small time scale may be assoc
to the micron-size diffusive layer and the large time sc
may correspond to the submicron double layer forces sc
This type of behavior is homogenized at large times a
using an average or expected residence time is neces
when upscaling. Another important characteristic of stic
ness is that it depends on location and time so that by m
eling it as depending on local chemistry one can produc
behavior for microbes which mimics active ‘‘attachment
detachment,’’ something not previously recoverable. A p
sible model for an initial distribution of the stickiness, as
function on the boundary, could be a random function
which a covariance structure is provided. This then gives
to a stochastic partial differential equation for evoluti
problems. The situation which first interested us was mod
ing of bacterial attachment through a flow chamber, the
per part of which is formed by a treated slipcover@38#, and
the lower by a microscope slide.

B. Irreversible sorption

Irreversible sorption or deposition is modeled by using
distribution for time at the boundary with infinite moment
One of the objectives of the experimental efforts of o
group is to measure single-cell attachment and detachm
the transfer of genetic information during attachment, and
develop a probabilistic model that describes these proce
in aggregated scales~Darcy scale and larger!. In theory,
deposition implies permanent attachment. Experimentall
particle that does not return to the aqueous phase afte
taching to a solid surface for the duration of the experim
might be considered deposited.
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Preliminarily, we model waiting times at the boundary
an a-stable process@39# represented by the characterist
function

f~s!5exp~2sausua!, ~9!

wheres anda are parameters ands is the frequency~dual to
time!. The inverse-Laplace transform of this characteris
function is the density. This is a particular case of ana-stable
process as presented in Eq.~1!. We have chosen this distri
bution for several reasons. Among these are: It is renorm
izable and so it is easily upscaled to homogenized por
systems; it can have either finite of infinite moments~de-
pending ona!; it has heavy tails consistent with experimen
and in special cases it can mimic the common exponen
distribution. Figure 1 shows a set of distributions with ch
acteristic function~9! for different values ofa and s51.0.
As a decreases, extreme events have higher probability. C
sequently, in Fig. 1 the area under the curves in this inte
@25,5# decreases witha and corresponds to heavier tails
the curves. Heavy-tailed~also referred as power-law! distri-
butions have found physically meaning applications in m
tiple disciplines@40# including material fatigue, network traf
fic, finance, signal processing, and geosciences. The phy
motivation is an observation of a process in which sca
involved vary on several orders of magnitude as we h
described is the case for sorption of bacteria in porous me
There exist observations and modeling of sorption w
heavy-tail distributions. Drazeret al. @41# and Drazer and
Zanette @42# conducted a series of experiments in whi
power-law trapping times explained observed ion transp
in activated carbon porous samples. Vladet al. @43# pre-
sented a thermodynamical theory consistent with Draz
@41# observations. While research on bacteria sorption is
developed enough to provide a full description of process
physical and chemical heterogeneities suggest that po
law scaling for long times is a reasonable assumption. T
dynamical description we present explains observed lo

FIG. 1. Symmetric stable densities (s51,b50,m50) for a
50.75, 1.1, 1.25, 1.50, and 1.75~highest to lowest peak!. Repro-
duced with the authors permission from@45#.
5-5
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tailed macroscopic behavior~@44# and references therein!
and provides motivation and ideas to devise pore scale
periments.

III. NUMERICAL CONSIDERATIONS

Here we discuss how random walk models are imp
mented in the presence of sticky boundaries. In the hom
enized version where the boundaries are not visible, thi
essentially a convection-diffusion-reaction~CDR! equation.
Traditionally, this is solved by a particle-tracking schem
which in each instant calculates probabilities of sorption
desorption, measures the amount of time~random! in each
phase~sorbed or desorbed!, and then performs the random
walk only on that portion of time in the desorbed phase. F
fast reactions, the constant generation of random varia
~for small time steps! becomes prohibitive and it is commo
to assume that on any fraction of time a fixed proportion
spent in either phase and then perform a random walk on
relative portion in the desorbed phase. Unfortunately, this
the unwanted effect of numerically retarding the flow, that
changing its clock. A more uniform approach suggested
the above analysis of sticky diffusion as a basis for CD
suggests not only should a random displacement take p
at each step, but also a random amount of time should
inserted into the clock.

There is not a lot of work for random walks with nona
sorbent boundaries in general and the added condition
wanting to keep track of the local time for a reflectin
boundary~to be used for the random time insertion! leaves
even fewer. In a paper of Lepingle’s@37#, an Euler scheme
for reflected SDE is proposed which is not based on proj
ing an escaped particle back into a domain, but it is inst
based on generating a random variable with the same d
bution as the local time of the process and using these e
variables to keep the process inside according to Eqs.~5! and
~4c! above.

The basic scheme of approximating the reflecting SDE
~0, `! with a continuous random walk, is

dXt5AD~Xt!dWt1V~Xt!dt1dKt , XtP~0,̀ ! ~10!

or in a half space

X05x0 , ~11a!

Yt1Dt5V~Xt!Dt1AD~Xt!WDt , ~11b!

Kt1Dt5Kt1maxS 0,2Xt1
AD~Xt!

2Z1Yt
22Yt

2
D ,

~11c!

Xt1Dt5Xt1Yt1Dt1g~Kt1Dt2Kt!. ~11d!

Here,WDt is a Gaussian random variable with mean zero a
varianceDt andZ is distributed as an exponential with mea
2Dt. The reason that this scheme approximates correct
reflected diffusion is that reflection in a line is a simple m
ter of taking any continuous function and adding anot
function which together always stays positive@37#. This so-
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called Skorohod problem in the case of a random w
Brownian motion is determined by the infimum of the pr
cess which in turn is given as an exponential random v
able of the type discussed. In a half space, each compo
has a covariance matrix for the dispersion, but this does
change the scheme much. A way of simulating flow throu
a two-dimensional tube with reflecting boundaries is to ma
the time step small enough so that one cannot during
interval hit both boundaries, then treat the problem only
cally, that is, one can keep track of a separate local time
each boundary and adjust the random walk accordingly.
obvious problem with this scheme is that it cannot be read
extended to other types of bounded domains in two dim
sions, much less to a circular capillary in three dimensio
This however is not a problem here as we are working i
slit domain.

The simulation of a sticky process follows the abo
scheme except that the sets of points making up the tra
tories for one realization (t,Xt) are replaced with@ t
1*0

t r(Xs)dKs ,Xs#. If one is interested in the position of
particle at a particular timet it can be had by finding the
time t for which At5t. One usually knows in advance th
times of interest and can simply calculate the timet when it
first surpassest. First passage times are especially easy si
one knows the position the particle is at when the time
reached and hence one need only keep track ofAt .

An alternative to this approach is ‘‘time marching’’ tha
uses a strict discretization of time to construct a simple r
dom walk. Upon hitting the boundary, the particle sticks a
then desorbs from the boundary with a probability saye.
However, to capture the boundary behavior of continuo
diffusions~which have infinite variation! with a discrete pro-
cess requires a dependence ofe on the time step. We show in
Appendix B that the appropriate order fore takes the form of

e

~11e!2 5
r

ADt
. ~12!

A disadvantage is that asDt→0, e→1, so that a large effort
is made in calculating almost certain events. Moreover, i
well known that a Poisson random variable is the limit
appropriately scaled binomial random variables and so
first exit from a wall is given by the distribution of the~in-
ter!arrival times of a Poisson which has an exponentia
decaying distribution. This means that upon averaging,
two approaches are equivalent.

In passing, we make a few comments for circular cap
laries. For a circular domain with no drift one can write th
Laplacian in polar coordinates, that is, the rectangular
grangian processXt ,Yt can be thought of as the product of
radial processRt and angular processQ t . This corresponds
to a skew product decomposition of Brownian motion whe
the radial process satisfies the stochastic differential equa

dRt5
1

2Rt
dt1dWt ~13!

together with reflection on the boundary. While the angu
process of interest satisfies
5-6
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3dQ t5
1

Rt
2 dBt , ~mod 2p!, ~14!

whereWt is a Brownian motion on the line~one-dimensional
random walk!, and Bt is a Brownian motion on the uni
circle. One can now apply Lepingle’s ideas to the radial p
cess without much trouble. The angular process can
thought of as taking place on the real number line and t
mapped onto the circle. The coefficient of its dispersi
1/Rt

2, can be integrated approximately by taking the aver
of 1/Rt

2 and 1/Rt1Dt
2 .

In more complicated polygonal-like domains, one c
perform a decomposition of the domain into overlappi
wedges~cones!, keep track of the particles position relativ
to the decomposition and near the boundary reflect the a
lar part alone.

A discussion of thea-stable deviate generator can b
found in Appendix A.

IV. RESULTS

As a reference, and in order to check the correctnes
the procedure and algorithms, we tested the case of Ta
dispersion in a reflecting slit capillary~Brenner and Edwards
@46#! with known asymptotic solution for the mean-squa
displacement

^DX2&Taylor5H 2D0t1
1

2
v2t21O~ t3! if t!b2/D0

S 2D01
v2b2

p2D0
D t1O~ t ! if t@b2/D0 ,

~15!

FIG. 2. Mean-square displacement^DX2& (m2) and rTS for
sorptive time with exponential distribution with parameterl50.5
and various values of Pe´clet number Pe5vb/D0 .
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wherev denotes the cross-sectional average velocity,D0 is
the diffusive ~motility! coefficient, andb is the half width
separation between walls. The mean-square displacem
^DX2& is computed as

^DX2&5^X2&2^X&2, ~16!

where the first moment̂X&5vt. The numerical algorithm
produced Taylor dispersion with relative errors under 1%

The two main parameters controlling the dynamics of
problem are the timetb5b2/D0 referred hereafter as th
cross-channel motility time, and the ratio of convective
motility fluxes which is called the Peclet number P
5vb/D0 . We define the dimensionless timet* 5t/tb , the
average time spent in the aqueous phaseta , the total simu-
lation time tm , and the average time spent in the sorb
phase ts5tm2ta and let rTS5^DX2&Taylor/^DX2&sim. We
compare the mean-square displacement of Taylor disper
@Eq. ~15!#, ^DX2&Taylor, to the mean-square displaceme
with sorption~exponential ora-stable waiting times as indi
cated! ^DX2&sim. If we consider long timest* @1, then
^DX2&Taylor5Defft* and ^DX2&sim5Deff* t

*
g and rTS

5Deff /Defft*
12g . In a log10-log10 plot rTS versust* the slope

is 12g and the intercept with the axist* 50 is
log10(Deff /Deff* ) ~slope and intercept of a tangent at anyt* !.
If the slope of this curve is positive then we call the eve
subdispersive (g,1) and if it is negative we call it superd
ispersive (g.1). If the intercept with thet* axis is negative
we haveDeff,Deff* , although this is only a relevant compar
son forg'1.

Next, we analyze an exponential waiting time for whic
the solution is known. IfX has an exponential distributio
with parameterl, then its density isf (x)5l exp(2lx) and
its expected value is 1/l. Here, the same relationship~15!
applies with reduced velocityv r5v/R0 and reduced diffu-
sion coefficientDr5D0 /R0 , whereR0 is a constant known
as the retardation factor. Figure 2 gives^DX2& and rTS for
l50.5, velocity v51025 m/s and widthb51025 m and
varying diffusion coefficientD0 ~this implies bothtb and Pe
change!. For short times (t* ,2) subdispersion is observe
(g,1) that converges to Taylor dispersion whent* .2 as
we expect. After Taylor dispersion is established, the ti
scaling of the mean-square displacement is linearg51, yet
the effective dispersionDeff* depends onD0 , which dictates
the collision frequency of the particles with the walls.

A. a-stable waiting times

We examine the effects of ana-stable waiting time distri-
bution on transport as a function of the parameterstb
5b2/D0 and Pe5vb/D0 . Both a ands control the sorption
process. We sets51 and focus ona ~Table I! which de-
scribes the frequency and magnitude of extreme events~rep-
resented by the heaviness of the tail of the distribution! of
times spent at the boundary. A large number of particlesN
55000) were released uniformly from a line transverse
the main direction of flow. To understand the dynamics,
us summarize some basic results of the simulations.
scaling in time of mean position and mean average displa
5-7
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TABLE I. Parameter range investigated.

Parameter Values Units

v 1026, 4.031026, 1.631025, 6.431025, 2.5631024 m/s
D0 10214, 10213, 10212, 10211 m2/s
b 1025, 4.031025, 1.631024, 6.431024 m
a 0.4, 0.8, 1.2, 1.6, 2.0 dimensionles
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ment is key to understand transport. Closely related to
scaling is the average number of collisions with the wallNc

that as we will see shortly depends ontb yet it is velocity
invariant.

For fixed total simulation timetm , we study the depen
dence ofta ~average time in aqueous phase! and ts ~average
time in sorbed phase! on a and tb . Figure 3~a! showsta /tm

and ts /tm for tm586 400 s~one day!. In Figs. 3~b!–3~d!,
extreme events have been identified by separating the a
age time in the sorbed phase into nonextreme events de
by time ts1 , and extreme events defined byts2 such thatts

5ts11ts2 . An extreme sorption event of durationte is de-
fined to be whente.t f where t f is a cutoff time. Various
cutoffs used are presented in Table II. Details of the sep
tion of ts into nonextreme and extreme events are given
Appendix C. One can think of a combination of reversib
~quantified byts1! and irreversible (ts2) events taking place
For the same bacterial motility relative to the pore size, t
is, for a fixed value oftb , bacteria will spend a greater frac
tion of time in the aqueous phase with greatera. Smaller
values ofa induce both a greater range of sorbed times a
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longer sorption times upon collision against a surface a
this agrees with the behavior ofa-stable distributions.

Comparing the ratiota /tm as a function oftb between
a-stable @Fig. 3~a!# and an exponential~not shown! it is
found that both are diffusive in shape. To illustrate how e
treme events influence this behavior, Fig. 3~b! shows the
ratio between average time in the aqueous phase and the
ta1ts1 . Figure 3~c! is a plot of (ta1ts1)/tm versustb . When
this fraction is zero~as a function ofa and tb! we are in a
deposition regime. Whena,0.5, complete deposition is
possible and it occurs for low values oftb ; e.g., for a
50.4, deposition occurs fortb,100. Fora.0.5, total depo-
sition does not occur@(ta1ts1)/tm never reaches zero#. Fig-
ure 3~d! shows the fraction of the simulation time these e
treme events take,ts2 /tm , as a function oftb . If the cross-
channel relative motility of the bacteria 1/tb[D0 /b2 is small
enough~or correspondingly the characteristic cross-chan
motility time tb5b2/D0 is large enough!, collision frequency
is low and sorption is limited. Consequently, a larger fracti
of time is spent in the aqueous phase. For large relative
tility, D0 /b2, ts2

(m) becomes a constant@plateau to the left of
the tb axis in Fig. 3~d!#. The constant is the fraction of simu
FIG. 3. Average time in aqueous (ta) and sorbed (ts) phase aftertm586 400 s.tb in seconds~s!.
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lation time bacteria stick to the boundary due to events
duration greater than the cutoffs in Table II. This fractio
tabulated in Table III, depends on botha, and the selected
cutoff t f . These values illustrate how deposition increases
the value ofa decreases. For instance, fora50.8 @second
curve from right to left in Fig. 3~d!#, a few long-time~strong!
sorption events account for nearly 90% of the simulat
time while for a51.2 these extreme events that may rep
sent deposition account for only 50% of the simulation tim

Figure 4 shows the average number of collisions,Nc , as a
function of tb . The average number of collisions dictates t
probability of attaching to a surface. Smalltb ~high-relative
motility! gives rise to collision saturation. The saturati
~plateau! occurs at a critical motility for which any additiona
energy invested by the bacteria for motility does not acc
erate sorption kinetics

Three transport or sorption regimes are apparent in Fig
~1! High-motility ~small tb! regime: Frequent collisions

will cause sorption kinetics to be fast, that is, equilibriu
will be approached quickily. Depending on the value ofa,
this means rapid deposition (a,1) or a decrease in the tim
fraction in the aqueous phase (a.1).

~2! Low-motility ~largetb! regime: Slow sorption kinetics
and greater time is spent in the aqueous phase.

~3! Transition regime: The transition between the two
gimes is shaped similar to a diffusion front.

The mean number of particles in the aqueous phase,^Ka&,
is a kinetic quantity. This kinetic parameter is ignored wh
looking at time averages as in Fig. 3~b!. We study the time
dependence of̂Ka& and ^Ks& (Np5^Ka&1^Ks&) in Fig. 5.
Figures 5~a!–5~d! show the evolution in time of the concen
trations in the aqueous and sorbed phases for selected v
of tb and different values ofa with tm524 h. The value oftb
for these plots was selected so thatCa5^Ka&/Np is close to
0.5. Figure 5~a! corresponds toa50.4 andtb51.563104.
According to Table II, about one in ten collisions has a stic
ing time greater than two minutes (t f5120 s). Yet it can be
seen that aftertm524 h equilibrium has not been reache
and bacteria are still slowly depositing on the walls. This
an example of slow kinetic sorption where most events
reversible sorption last under two minutes, yet rare dep
tion events dominate the long-term kinetics. From Fi
5~a!–5~d! and other simulations, it is possible to conclu
that the resulting regimes include both irreversible deposi
and reversible sorption. Ifa,1 deposition occurs. Asa↑1
the deposition occurs in a slower fashion@Figs. 5~a!, 5~b!;
Fig. 5~b! corresponds toa50.8 andtb54.943102]. For a
.1, reversible sorption takes place. Asa increases above
one, the kinetic effects have shorter duration and equilibri
between sorbed and aqueous phases is reached quickly@Figs.
5~c!, wherea51.2 andtb549.4, and 5~d! wherea51.6 and
tb515.6#.

TABLE II. Cutoff values for extreme sorbed times.

a 0.4 0.8 1.2 1.6 2.0
t f cutoff 120.18 33.65 13.215 6.653 4.02
P(iTi<t f) 0.90 0.96 0.975 0.9975 0.999
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B. Moments

The number of collisions, mean number of particles in t
aqueous and sorbed phases, and mean time spent in
phase are dependent only on the parametersa and tb and
independent of the mean velocityv. This is in contrast with
both the mean position and mean-square displacement w
are velocity dependent. The average position of an ensem
of 2000 particles is shown in Fig. 6~a! for the same values o
a and tb used in Figs. 5~a!–5~d!. Figure 6~b! gives the flow
retardationR05^X&v /^X&sim5vt* /Veff* t

*
u which is the ratio

between the mean displacement of a nonsorptive spe
with average velocityv to that of a simulated sorptive spe
cies. Retardation converges to a constant value only foa
.1.

Figures 7~a!–7~b! show the mean-square displaceme
and rTS for the same selected values ofa and tb as in the
previous two plots. The reader should note that the me
square displacement is defined bŷDX2&5^@X(t)
2^X(t)&#2& where in general̂ X(t)&Þvt with v the mean
velocity. We call^DX2& superdispersive if it scales withtg

where g.1, Taylor dispersive ifg51, and subdispersive
otherwise. It should be noted that this terminology appl
when talking about the rate of growth in time~proportional
to g for any given time! yet the total mean-square displac
ment for a superdispersive situation may still be bound
Taylor dispersive mean-square displacement, that
^DX2&super5Deff* tg,Defft5^DX2&Taylor is possible withg.1.
For a52.0, dispersion scales as Taylor@Eq. ~15!# while a
,2.0 are superdispersive. As pointed out earlier, whena
,1, slow deposition regimes develop and are noticeable
t* @1. This renderstm51 day insufficient to observe long
time dispersive effects, so we settm5100 days58.64
3106 s for the smaller values ofa. Figures 8~a! and 8~c!

FIG. 4. Number of collisionsNc for various values ofa after
tm586 400 s of total simulation time.tb in seconds~s!.

TABLE III. Fraction of extreme sorption events to simulatio
time, for high-relative cell motility.

a 0.4 0.8 1.2 1.6 2.0
t f cutoff 120.18 33.65 13.215 6.653 4.021
maxts2

(m) 0.993 0.897 0.515 0.199 0.0175
5-9
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FIG. 5. Concentration in the aqueous and sorbed phases~Ca andCs! for various values ofa after tm51 day. ~a! a50.4; ~b! a50.8; ~c!
a51.2; and~d! a52.0. C, t are dimensionless.
t

ll
te

*

show the mean position and mean-square displacemen
these longer simulations. Figures 8~b! and 8~d! gives the re-
tardation factorR0 andrTS. On a log10-log10 scale, the de-
pendence of̂X& and^DX2& on t* 5t/tb appears linear when
t* .10. Smallt* corresponds to a lower total number of wa
collisions ~slow sorption kinetics! and therefore it is ex-

FIG. 6. ~a! Mean particle position and~b! retardation factorR0

for selected values ofa and tb after tm51 day of total simulation
time. ^X& in meters~m!, R0 and t* are dimensionless.
03191
forpected to transition between a ‘‘pure’’~no sorption! Taylor
dispersion (t* ,10) to apparent anomalous dispersion (t*
.10) resulting from sorption.

We posit^X&5Veff* t
*
u and perform regressions to estima

Veff* and u. Figure 9~a! showsu for a50.6 ~top curve! and
a50.4 ~bottom curve!. The ~log10 of! coefficient Veff* is

FIG. 7. ~a! Mean particle dispersion and~b! rTS for selected
values ofa and tb after tm51 day of total simulation time.̂DX2&
in ~m2!, rTS and t* are dimensionless.
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FIG. 8. ~a! Mean position;~b! retardation factor;~c! mean-square displacement; and~d! rTS for a50.6 after tm5100 days of total
simulation time. Different curves correspond to different values of Pe´clet number as marked.^X& in meters~m!, DX2 in ~m2!.
lin
it
c

e

shown in Fig. 9~b! for both values ofa50.4 anda50.6.
Below a thresholdtb,Txa , u5a ~here,Txa depends ona!.
For tb.Txa , u→1 and the mean displacement appears
ear.Veff* is not to be confused with the effective velocity, as
is clearly larger than the maximum velocity. The true effe
tive velocity isVeff5Veff* tb

u21 and it is always bounded by th
maximum fluid velocity.
03191
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For the mean-square displacement, we also posit^DX2&
5Deff* t

*
g Figures 9~c! and 9~d! show g and Deff* for a50.6

@circles in Fig. 9~d!# anda50.4 @triangles in Fig. 9~d!#. For
a50.6, the regime appears superdispersive (g.1) and
evolves fromg52a towardsg52 as tb increases. Fora
50.4, the regime appears subdispersive fortb,Txa and then
asg increases it appears superdispersive.Deff* increases with
FIG. 9. Coefficients in fractional regressions for mean position^X&5Veff* t
*
u and mean-square displacement^Dx2&5Deff* t

*
g as functions of

tb anda. ~a! u for a50.4 ~upper curve! anda50.6 ~lower curve!, ~b! Veff* for a50.4 ~triangles! anda50.6 ~circles!, ~c! g for a50.4 ~upper
curve! anda50.6 ~lower curve!, and~d! Deff* for a50.4 ~triangles! anda50.6 ~circles!. tb in seconds~s!.
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FIG. 10. Comparison of the Taylor dispersion of a nonsorbing species~labeled Taylor! and the dispersion of ana-stable sorbing bacteria
for a50.6. Different curves correspond to different values oftb : ~a! tb5105; ~b! tb5104; ~c! tb5103; ~d! tb5102; and~e! tb510. ^DX2&
in ~m2!, t* is dimensionless.
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tb and does not depend ona. Sinceg increases monotoni
cally as well, we draw the conclusion thata-stable sorption
enhances dispersion by several orders of magnitude~relative
to Taylor dispersion of a nonsorptive species! for values of
a.0.5. Maximal dispersion occurs for the greater values
tb . Figures 10~a!–10~e! compare Taylor dispersion of a non
sorbing to ana-stable sorbing species witha50.6 Figure
10~a! exhibits a distinct behavior for early timest* ,6 very
close to Taylor dispersion and then transitions to appa
superdispersion. This can be explained by noting that
sorbing boundary creates retardation after sufficient time
consequently enhances dispersion. Fortb5105, collisions
are infrequent and this effect is observable at the time s
analyzed in the simulations presented. For values oftb
,105, we observe a well-established long-time regime
both the nonsorptive and sorptive cases. We conclude
our analysis is centered on long-term dispersion for the s
tive case and it is characterized by retardation in the m
position and superdispersion.
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We next analyze the sensitivity of estimation in the p
rametersu, Veff* , g, and Deff* and further elucidate on ou
discussion of short versus long-term dispersion. The go
ness of fit parameter for all regressions isR2.0.99. Figure
10~a! shows^DX2& for a50.6 andtb5105. It suggests that
short timet* ,6 behavior may not be described accurate
by the fractional law withDeff* 53.3331022 and g51.97,
even if R250.994. We separate short-and long-time m
ments and estimate parameters in each subrange. Fotb
5105, the short-time range corresponds tot* ,6. An analo-
gous procedure is employed for the selection of the thresh
for other values oftb .

Figures 11~a!–11~d! display the coefficients in̂ Dx2&
5Deff* t

*
g as a function oftb for short times~triangles!, long

times ~diamonds!, and over the entire range~crosses! for a
50.4 @Figs. 11~a! and 11~b!# and a50.6 @Figs. 11~c! and
11~d!#. Fora50.4,g andDeff* @Figs. 11~a! and 11~b!# behave
consistently. Fortb,103, g'3a/2 is constant with respec
to tb while for long timesg'2a. The values ofg are very
5-12
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FIG. 11. Coefficients in fractional regression for mean-square displacement,^Dx2&5Deff* t
*
g , as functions oftb and a. Estimation

performed with simulationtm5100 days long considering all time range~crosses!, short times~triangles!, and long times~diamonds!. ~a! g
for a50.4, ~b! Deff* for a50.4, ~c! g a50.6, and~d! Deff* for a50.6. tb in seconds~s!.
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close fortb,103 using the short- and long-time evolution o
^Dx2&. For tb.103, apparent subdispersive behavior evolv
into superdispersive spreading. The coefficientDeff* @Fig.
11~b!# remains unchanged even with the fluctuations ofg.
The consistency of the estimated values forg andDeff* sug-
gests the scaling can be defined universally for long time

For a50.6, g @Fig. 11~c!# behaves monotonically excep
at tb5105 for the short-time estimator where a sudden d
crease ing occurs. As we discussed previously, this is due
a change in dispersion regime which is controlled by the w
collision frequency. Sinceg.1 for all tb , the dispersion
regimes fora.0.5 appear superdispersive. The behavior
g for long times is always monotonic suggesting univer
scaling. The behavior ofDeff* @Fig. 11~d!# is very similar to
the casea50.4.

C. Effect of Pe number

We consider now convective flux relative to the motili
flux in the form of Pe´clet number, Pe5vb/D0 . Figure 12~a!
shows^DX2&sim and Fig. 12~b! shows the benchmark rati
rTS5^DX2&Taylor/^DX2&sim for a simulation witha50.4 and
constanttb523104. Figures 12~a! and 12~b! shows that
both g andDeff* depend on the Pe´clet number in a nonlinea
fashion. Dispersion is initially Taylor scaled (g'1) for t*
,1 for all Péclet numbers. Ast* increases, for low Pe´clet
numbers the transport is subdispersive. As Pe increa
(Pe'0.5) the transport turns superdispersive for smallt* ,
reaches a Taylor scaled plateau, and then turns subdispe
for large t* . Physically, we know deposition is taking plac
(a50.4,1) and sincetb523104 is constant for all curves
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in Fig. 12~b! we expect that for larget* .103, the particles
will be mostly in the sorbed phase with infrequent excursio
into the aqueous phase resulting in subdispersive beha
However, while there are numerous particles in the aque
phase,t* ,102 they take more frequent excursions to sam
the velocity field. Being the sorption times area-stable dis-
tributed, this sampling occurs in such a fashion that the ov
all result is superdispersion. This corresponds well to
case of strong sorbers studied by Bychuk and Oshaugh
@47#, its scaling being that of a Levy walk. As for the firs
moment ^X&, it scales like^X&5Veff* t

*
u with u5a for t*

.100. Fort* ,5, it scales like flow with average velocityv
and is linear in time.

We now consider the case of reversible or weaker so
tion, a.1. In Figs. 13~a! and 13~b! a51.2, Pe,1. At low
Pe, this results in no coherent net deterministic displacem
^X& and diffusive motility dominates. We have pointed o
that different sorption regimes develop withtb . We first con-
sider the case for smalltb . The upper curve in Fig. 13~b! is
for tb50.11, that is, the particles collide very often with th
surface. This regime is diffusion dominated and therefore
very sensitive to velocity. It evolves from subdispersi
(Deff,Deff* ,g,1) for smallt* to a delayed Taylor dispersiv
(Deff,Deff* ,g'1) regime for larget* . For tb51000, the
lower-left curves in Fig. 13~b! correspond to different value
of the velocity~keeping Pe,1!. Dispersion is Taylor scaled
(g'1), yet it is a fraction~by a factor of 2! of the nonsorp-
tive case (Deff,Deff* ). This is consistent with the fact that th
particles are mostly in the aqueous phase. In conclusion
a.1 and low Pe´clet numbers, the resulting dispersion w
5-13



Tay-
h

to
al
re-
eri-
een
n
he
are
is

. We
bes
e
a
tely
t to
ere
m
an
ti-

del
st a
ure-

be-
.
ion

-
-
ent
as
r

e
pe-
es.
re-

ss,

ous
the

e

sis-

n

r

F. ALEJANDRO BONILLA AND JOHN H. CUSHMAN PHYSICAL REVIEW E66, 031915 ~2002!
FIG. 12. Mean-square displacement^Dx2&sim5Deff* t
*
g variation

with Péclet number Pe5vd/D0 . Fixed tb523104 anda50.4. ~a!
^Dx2&sim5Deff* t

*
g , ~b! Benchmarking ratio against Taylor dispersio

rTS5^DX2&Taylor /^DX2&sim. ^DX2& in ~m2!.

FIG. 13. Mean-square displacement^Dx2&sim5Deff* t
*
g variation

with Péclet number Pe5vd/D0 . Fixed a50.4. tb varies as indi-
cated.~a! ^Dx2&sim5Deff* t

*
g , ~b! benchmarking ratio against Taylo

dispersionrTS5^DX2&Taylor /^DX2&sim. ^DX2& in ~m2!.
03191
be a retarded flow that progresses from subdispersive to
lor dispersive for larget* . This transition depends on bot
a and the value oftb , being fast for largetb and slow for
small tb .

V. DISCUSSION

The work presented herein is motivated by the desire
predict the evolution of genetic information in microbi
populations within natural porous media. This work rep
sents an important step towards this goal. Our earliest exp
ments on the propagation of antibiotic resistance and gr
fluorescent protein transfer~Wu @1#! have been conducted i
auger plates and microflow cells. In the microflow cell, t
transfer of genetic information takes place while the cells
adsorbed on the flow cell wall. The length of time the cell
adsorbed plays a direct role in the gene transfer process
are thus motivated to study the hydrodynamics of micro
in microflow cells and their ‘‘stickiness’’ with respect to th
walls. Brownian dynamic simulations of self motility in
convective field has been previously shown to adequa
describe the behavior of microbes. We have added a twis
these simulations by considering sticky boundaries, wh
upon hitting a boundary the microbe sticks for a rando
length of time. This random length was governed by
a-stable distribution. The use of this distribution was mo
vated by four points:~i! a stables are renormalizable,~ii ! a
stables can have finite or infinite moments,~iii ! a stables
have heavy tails that highlight extreme events, and~iv! a
stables are consistent with experiments.

The sensitivity has been studied in detail and the mo
can account for a great many sorptive processes with ju
few parameters that may be estimated from direct meas
ments in the spirit of Drazeret al. @41#. The numerical ex-
periments use Brownian dynamics in a convective flow
tween parallel plates witha-stable sorption waiting times
The parameters found to control transport limited sorpt
area and, as in classical dispersion,tb5b2/D0 which is the
ratio of the square of the half width of the channelb to the
diffusion coefficient of the bacteriaD0 that represents bacte
ria self motility. Thea-stable waiting times distribution gen
erates anomalous dispersion. The time evolution is differ
from that of a random walk with random stopping times
treated by Compteet al. @48# since stopping times here occu
only upon collision with a wall instead of every diffusiv
step. As in classical Taylor dispersion with nonsorbing s
cies, there exist a distinct behavior for short and long tim
In classical dispersion, the threshold between the two
gimes occurs att* 5t/tb'1. In the case ofa-stable sorptive
species, this transition threshold depends on botha and tb .
When defining short and long times as limits for the proce
it is useful to look at the number of wall collisionsNc which
depends linearly on the average time spent in the aque
phaseta . Here, we have studied and reported in detail
dependence ofta on tb anda.

Universal scalings~with respect to dimensionless tim
t* 5t/tb! for the mean position̂X&5Veff* t

*
u and mean-square

displacement̂ Dx2&5Deff* t
*
g exist for long-time dispersion

and the coefficients were obtained. Their values are con
5-14
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tent and robust. The values of waiting time parametera and
the characteristic cross-channel motility time,tb determine
the nature of dispersion. Ifa,0.5, there exist a combinatio
of apparent subdispersive (g,1) and apparent superdispe
sive (g.1) dispersion regimes whose transition depends
the value oftb . For a.0.5, dispersion appears superdisp
sive andg increases withtb . Short- and long-time dispersio
regimes may be consistently described with the same co
cientsg andDeff* for a wide range of conditions. Reversib
and irreversible sorption can be modeled simultaneou
with an appropriate choice fora. Valuesa,1 allow deposi-
tion which occurs slower asa approaches one from below
These results are important for interpreting experiments
calibrating reactors where sorptive conditions widely vary
space.
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APPENDIX A: a-STABLE DEVIATE GENERATOR

Stable deviates were generated with the Chamb
Mallows-Stuck algorithm. Since historically there have be
inaccuracies in the literature surrounding this algorithm,
summarize it after developments by@49#. We do not include
details about the construction of this particular fast gener
of stable random variables as they can be found in@49# and
@45# and citations therein.

A random variableY is a stable if and only if its charac
teristic function is given by

log10f~s!

5H 2sausuaH 12 ib sgn~s!tan
pa

2 J 1 ims if aÞ1

2susu H 11 ib sgn~s!
2

p
log10usuJ 1 ims if a51,

~A1!

whereaP(0,2# is the characteristic exponent,bP@21,1# is
the skewness,s.0 is a scale parameter, andmPR is a
location parameter. We writeY;Sa(s,b,m). When s51
andm50 the distribution is called standard stable. Compu
generation of a stable random variable follows

Y5H sX1m if aÞ1

sX1
2

p
bs log10s1m if a51,

~A2!

where X is a standard stable random variable, that is,X
;Sa(1,b,0). Now, to generate a standard stable deviate,
low the steps:
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~1! Generate a random variableV uniformly distributed
on ~2p/2, p/2! and an independent exponential random va
ableW

~2! For aÞ1, compute

X5Sa,b

sin@a~V1Ba,b!#

@cos~V!#1/a S cos@V2a~V1Ba,b!#

W D ~12a!/a

,

~A3!

where

Ba,b5

arctanFb tanS pa

2 D G
a

, ~A4!

Sa,b5F11b2 tan2
pa

2 G1/~2a!

. ~A5!

~3! For a51, compute

X5
2

p F S p

2
1bVD tanV2b log10S W cosV

p/21bVD G . ~A6!

The exponential deviates are computed by the inve
transform method based on uniform deviates. The unifo
deviates needed were generated with an algorithm by@50#.

APPENDIX B: LIMITING BEHAVIOR OF RANDOM
WALKS

We collect here some analytic results which are usefu
determining how to parametrizer, as well as some of the
limiting behavior of random walks.

We first show that for a time discretized process that
have a positive amount of time on the boundary that

e

~12e!2 5
r

ADt
, ~B1!

wheree is the probability of staying on the boundary. Fro
the central limit theorem or the basic properties of Brown
motion the time scale versus displacement scale isBst

5AsBt . This means that if one discretizes the random w
in time and space and time steps are divided asDt then the
corresponding space discretization should be on the orde
ADt, so for example, if dividing time into intervals of lengt
0.01, one should divide space into intervals of length 0
Now if a random walk on the points$0, ADt, 2ADt . . . is at
zero at time zero and stays at zero with probabilitye and if
not at zero goes up or downADt amount with probability
0.5, then one can ask how much time is the random wal
zero on the time interval$0,Dt,2Dt,...,n/DtDt% that is on
@0,n# wheren is some large time.

The first question of interest is what is the distribution
the time that it takes for a bacteria executing a Brown
motion to first attach to a flow tube’s boundary. If we assu
that the flow is slow relative to the length of the flow tub
then the answer is given by integrating the transition dens
5-15



-

s

-
o
m

to
m
ob

ca
s

o

is

an
in
es

most

ti-
hich

l

e

e

li-

ent

F. ALEJANDRO BONILLA AND JOHN H. CUSHMAN PHYSICAL REVIEW E66, 031915 ~2002!
That is, if we letP(t.t) denote the probability that a mi
crobe entering a flow cell has not hit the wall by timet, then
with D as the cross-sectional area of the flow cell one ha

P~t.t !5E
D

p~ t,0,y!dy5E
D
(
n51

`

e2lntfn~0!fn~y!dy

5 (
n51

`

e2lntfn~0!E
D

fn~y!dy5 (
n51

`

cne2lnt,

wherefn are Bessel functions,ln are zeroes of Bessel func
tions, andcn are the integrals of the Bessel functions, all
which have been well tabulated. Notice that the long-ti
asymptotics are determined by the leading-order term int.

If we do not assume that the velocity is slow relative
the length of the flow cell then there is a chance that a
crobe might never hit the boundary before exiting. The pr
ability of this event happening is approximately given~again
letting D be the cross section!

P~t.t !5P~tD.t or tend,t !'P~tD.t !1P~tend,t !.
~B2!

The first of these is calculated as before and the latter
be approximated by a volume-averaged one-dimensional
chastic process.

Another question of interest is the expected amount
time a microbe spends on the wall. This is given by

^twall&5^rKt& the local time of the process

5r^Kt&'r
u]Vu
uVu ^T&

5r^Kt&'r
u]Vu
uVu

length

^v&
. ~B3!

Here,T is the time inside the flow cell.
The final question we are interested in is what is the d

tribution of the time on the wall for a microbe in a flow
chamber given that it starts on a wall. This is an import
question, since if one is interested in introducing genetic
formation into a microbial community the transfer of gen
l

l.

a

er
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takes place when microbes come into contact, a process
likely to occur on boundaries. Witht̃ representing the
amount of time on the boundary we want

P~ t̃.tu t̃.0!'PS KT.
t

r D'PS K ~ length!/^v&.
t

r D .

~B4!

This last quantity is finally calculated@using Eq.~20!# as
the square root of an exponential distribution.

APPENDIX C: EXTREME EVENTS TREATMENT

To study reversible or irreversible sorption, we differen
ate between adhesion events as follows. We decide w
eventsj are extreme for particlei by defining a cutoff value
for attachment timet f , such that the durationts

i j is consid-
ered an extreme value ifts

i j .t f . Table II shows a set
of cutoff values for different values ofa selected for the
following analysis. The third line in Table II is the tota
mass ~probability! under the sorption time probability
density function up to the cutoff timet f @51#. The value
P(iTi<t f) is the probability of occurrence of a nonextrem
sorption time eventj for particle i of duration ts1

i j , and
12P(iTi<t f) is the probability of occurrence of an extrem
sorption time event upon collision~duration ts2

i j !. Average
times ts1 and ts2 are computed as

ts15
1

Np
(
i 51

Np

(
j 50

Nc

ts
i j P~ ts

i j !, ~C1a!

ts25
1

Np
(
i 51

Np

(
j 50

Nc

ts
i j @12P~ ts

i j !#, ~C1b!

where i and j are counting variables for particles and col
sions, respectively,Np is the number of particles,Nc is the
average number of collisions against the wall, andP(ts

i j ) is
an indicator function for the occurrence of an extreme ev

P~ ts
i j !5H 1 if ts

i j ,t f

0 otherwise.
~C2!
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